Phage P1 Summary of Genes
P1 Gene products (listed by gene position) from Supplemental Table S1 Łobocka, MB et al. (2004) [1]
a Gene products marked by an asterisk were either purified or identified in PAGE gels.
b Coordinates of genes refer to their positions in the P1 c1-100 mod749::IS5 genome without its non-integral parts, IS5 and the associated 4-bp duplication. Coordinates of protein-coding genes are from the initial codon through the first stop codon.
c Conserved motifs of amino acid sequences were detected as described in Materials and Methods. Motif abbreviations used: HTH: helix-turn-helix, TMH: transmembrane helix, SP: signal peptide. The name of each motif is followed by its coordinates in the protein sequence. Abbreviations used to describe homologies: r.: region of amino acid residues, idt.: identical. Accession numbers or locus names of P1 protein homologs in data bases as well as their lengths in amino acid residues (aa) are given in parentheses. Amino acid sequences of P1 protein homologs marked with a superscript T can be found in the T4 and T4-like phages data base (http://phage.bioc.tulane.edu/).
d References marked by an asterisk concern identification of a protein or RNA product of a given gene; those marked by a superscript S concern previously published sequences. Superscript SD, published sequence differs internally from sequences presented here; superscript SP, published sequence is partial.
<protect>
Name {former names}a | Closest homologs {amino acid sequence motifs}c | Basis for name; known or proposed function | Referencesd |
---|---|---|---|
Cra {gpORF0}{gpORF1} |
r. 12-72 43% idt. to r. 9-70 of putative regulatory protein of Yersinia pestis virulence plasmid pAM1 (T15034; 71 aa) |
putative cre-associated function |
302S [2] |
24 % idt. to integrase-like protein of Pseudomonas sp. transposon Tn5041 (351 aa; CAA67462); similar to prokaryotic integrases and recombinases; {TMH: 163-177} |
cyclization recombinase; cyclizes P1 DNA at redundant loxP sites on infection; resolves dimers, oligomers; may also modulate copy number |
||
establishment of lysogeny? |
|||
{TMH: 95-105} |
recombination enhancement function; aids microhomology recognition, maximal function requires recBCD activity |
||
Mat {gp1; gp18?} |
particle maturation |
191[14]S,346 | |
Res* {EcoP1; R} |
55% idt. to Res subunit of EcoPI of Neisseria meningitidis MC58 (NP_274282; 979 aa); similar to type III Res proteins; {DEAD-box helicase superfamily: 50-263; HTH: 749-768; TMH: 111-117} |
restriction component (EcoP1) of type III restriction-modification system |
|
Mod* {M} { C2,C3} |
34% idt. to Mod subunit of type III restriction-modification enzyme of Bacillus cereus (CAB40611; 669 aa); {N6_N4_Mtase DNA methyltransferase domain (pfam01555.5): 343-471} |
modification and site recognition component of type III restriction-modification system; modifies pairs of 5’-AGACC sequences; host lethality of mod- alleles led to misnomers c2, c3 |
|
Lxc* {Bof}{C6} |
lowers expression of c1, enhances binding of C1 to all its operators |
||
unknown; product of gene upstream of lxc |
this workS | ||
r. 91-274, 759-1229, 1461-1651 27%, 24%, and 25% idt. to r. 161-344, 789-1217, and 1345-1523 of putative protein of Rhizobium rhizogenes plasmid pRi1724 (NP_066674; 1693 aa); r. 49-284 27% idt. to r. 421-689 of DNA methylase-like protein of Listeria innocua (NP_569161.1, 756 aa) {SNF2 family N-terminal domain (pfam00176.5): 1046-1268; helicase conserved C-terminal domain (pfam00271.5): 1454-1517} |
defence (in cis) against a subset of type I restriction enzymes e. g. EcoB, EcoK; putative DNA methyltransferase and DNA helicase; may methylate DNA during injection |
155*[26],this workS | |
Prt {gp13, gp14?} |
minor similarities to the portal protein gp20 of bacteriophage T4 (VG20_BPT4; 524 aa) and other T4-like phages; {TMH: 163-174} |
portal protein (by similarity) |
252[18], this workS |
Pro {gp4, gp14?} |
r. 34-159 30% idt. to r. 27-149 of HPr kinase of Enterococcus faecalis (HPRK_ENTFA; 310 aa); r. 115-268 22% idt. to r. 256-388 of E. coli ClpX (CLPX_ECOLI, 424 aa) |
putative head processing protease; required for head morphogenesis and maturation of DarA precursor protein, homology suggests additional kinase activity |
|
lysis determinant, putative antiholin |
this workS | ||
{TMH: 13-32, 42-59} |
lysis determinant, putative holin |
this workS | |
Lyz {gp17} |
r. 10-179 52% idt. to Yersinia pestis putative phage lysozyme (NP_405650, 170 aa); {phage lysozyme domain (pfam00959.5): 55-173} |
lysozyme |
277S[29] |
64% idt. to Ssb protein of S. typhi (AAF14810.1, 178 aa) {Ssb family domain (pfam00436.5): 6-114} |
single stranded DNA binding protein; can complement E. coli ssb when derepressed by an lxc mutation |
187S[30] | |
unknown; product of IS1 associated gene |
this workS | ||
transposition protein InsB of integral P1 IS1 |
this workS | ||
{HTH: 64-85} |
transposition protein InsA of integral P1 IS1 |
this workS | |
unknown; product of IS1 associated gene |
149S[31] | ||
Hxr {ORFVIII} |
r. 23-80 28% idt. to r. 2-80 of Xre phage repressor of Bacillus subtilis prophage PBSX (XRE_BACSU; 113 aa) necessary for maintenance of lysogeny |
homolog of xre; possible repressor protein |
149S[31] |
{neutral zinc metallopeptidase zinc binding region signature (Prosite: PS00142): 869-878} |
unknown; product of the second gene downstream of darA; possible protease or response regulator |
149SD[31] | |
unknown; product of gene internal to ddrB |
this work | ||
DdrA {Vad?} |
uncertain; product of the first gene downstream of darA; defect possibly causes vad (viral architecture determinant) phenotype characterized by altered P1B:P1S:P1M ratios |
149S[31] | |
DarA* {Vad &/or Tsu?} |
r. 157-279 28% idt. to r. 702-822 of Methanosarcina acetivorans chromosome segregation protein (AAM07677, 1175 aa); r. 107-293 23% idt. to r. 29-202 of Hdf |
defends against restriction by type I restriction endonuclease and enables DarB to function; internal head protein processed by Pro |
|
Hdf {Gta?} |
r. 29-202 23% idt. to r. 107-293 of DarA |
homolog of DarA fragment; function uncertain; defect possibly causes gta (generalized transduction affected) phenotype |
149S[31] |
LydB {gp2} |
r. 1-61 100% idt to fragment of LydB protein of p15B plasmid (Q47425, 61 aa) |
lysis determinant; prevents premature lysis, LydA antagonist |
|
100% idt. to plasmid p15B holin LydA (Q47424, 109 aa), r. 14-97 30% idt.to r. 7-89 of P1 LydC; {TMH: 7-26, 36-58} |
lysis determinant; holin; promotes cell lysis |
||
r. 7-89 30% idt. to r. 14-97 of LydA holins of P1 (109 aa), and p15B plasmid (Q47424, 109 aa); {TMH: 4-23, 30-52} |
lysis determinant; putative holin (by homology) |
this workS | |
83% idt. to DNA invertase of E. coli O157: H7 prophages VT2-Sakai (NP_308311; 184 aa) and 933H (NP_285972; 196 aa), and E. coli prophage e14 (PINE_ECOLI; 184 aa); similar to other procaryotic DNA site-specific recombinases catalysing DNA inversions; {resolvase N-terminal domain (pfam00239.5): 1-127; resolvase HTH domain (pfam02796.5): 141-182} |
C-segment inversion; cix site-specific recombinase providing for alternate fiber gene expresson and hence host range enlargement; also able to fuse genomes |
||
gp Sv' |
r. 200-518 85% idt. to variable fragment of tail fiber protein gpS of bacteriophage Mu (NP_602303, 328 aa) |
variable part of the tail fiber protein (Sc+Sv'), expressed when its gene is in (-) orientation |
this workS |
95% idt. to tail fiber assembly protein gpU of phage Mu (NP_602302, 177 aa); r. 73-176 21% idt. to r. 94-191 of bacteriophage λ tail fiber assembly protein Tfa |
tail fiber assembly chaperone (by similarity), named after Mu homolog; variable gene of tail fiber operon, expressed when in (-) orientation; may be a virion protein |
146[36],this workS | |
gpU* {gp20} |
95% idt. to tail fiber assembly protein gpU of phage Mu (NP_050654, 175 aa); r. 51-174 30% idt. to r. 67-191 of bacteriophage λ tail fiber assembly protein Tfa |
tail fiber assembly chaperone (by similarity); named after Mu homolog; expressed when in (+) orientation; may be a virion protein |
142*, 146[36], this workS |
gpSSc+Sv {gp19} |
r. 648-985 and 175-252 85% and 39% idt., respectively to r. 162-502 and 73-150 of phage Mu tail fiber protein gpS (NP_050653, 504 aa); numerous regions of homology to tail fiber proteins of other phages {phage tail fiber repeat domain (pfam03406.4): 215-258} |
tail fiber specificity, consists of a constant (Sc: aa 1-453) and variable (Sv: aa 454-987) segment; Sv is exchanged for shorter Sv' (aa 454-971) upon inversion of C-segment; named after Mu homolog |
|
gpR {gp11? gp12?} |
98% idt. to predicted gpR of E. coli plasmid p15B (S18683, 144 aa) |
tail fiber structure or assembly |
104S[37] |
r. 113-278 96% idt. to a fragment of tail fiber region product of E. coli plasmid p15B (ECP15BG) |
baseplate or tail tube |
||
BplA {gp3?} |
r. 9-331 24% idt. to r. 14-338 of putative protein of Desulfovibrio desulfuricans (ZP_00130636, 469 aa); r. 27-313 20% idt. to phage T4 baseplate wedge structural protein (VG6_BPT4, 660 aa) |
putative baseplate structural protein (by homology), may be involved in contact between hub and wedges, as its homolog in T4 |
this workS |
putative morphogenetic function |
this workS | ||
r. 747-878 34% idt. to r. 131-259 of D. desulfuricans putative protein (ZP_00128659, 544 aa); r. 467-882 16% idt. to r. 1141-1545 of putative transglycosylase of B. subtilis phage SPβc2 (NP_046584.1, 2285 aa); r. 749-870 30% idt. to r. 14-138 of internal virion protein D of phage T7 (VIVD_BPT7, 1318 aa); r. 450-691 21% idt. to r. 306-548 of T4-related phage RB69 gp29 protein (NP_861896, 590 aa) |
structural injection transglycosylase; putative tail tube “ruler” |
190S[38] | |
r. 85-120 38% idt. to r. 80-111 of T4-related RB49 bacteriophage essential base plate hub subunit protein (26_RB49T; 209 aa) |
putative morphogenetic function |
this workS | |
r. 123-180 32% idt. to r. 102-160 of tail tube protein gp19 of T4-related phage RB49 (Q9MCD9; 164 aa); r. 113-180 28% idt. to r. 92-160 of tail tube protein gp19 of T4-related phage nt-1 (Q9MCE0; 166 aa) |
major tail tube protein |
this workS | |
r. 36-130 27% idt. to r. 75-159 of protein of unknown function of T4-like phage Aeh1 (5.1_Aeh1T; 183 aa) |
putative morphogenetic function |
this workS | |
SimC* {Sim} |
{SP: 1-31} |
confers superimmunity when in high copy number by blocking P1 at entry; requires removal of leader sequence |
|
SimB {gpORF50} |
{SP: 1-18} |
unknown; superimmunity linked function |
213SD[42],this workS |
{SP: 1-17} |
unknown; superimmunity linked function |
||
C4* |
antisense RNA that inhibits synthesis of Icd and Ant1/Ant2 by acting on target ant RNA; processed to its active form by RNase P |
||
Icd* {gpORFX} |
97% idt. to putative protein x of bacteriophage P7 (PID: g628248, 73 aa) |
reversible inhibition of cell division, apparently required for ant expression |
|
Ant1*{RebA} |
r. 144-345 51% idt. to r. 67-263 of P1 KilA; r. 178-342 58% idt. to r. 74-235 of DNA-binding protein Roi of phage HK022 (NP_597902, 241 aa ), and similar to antirepressor proteins of other phages; {phage antirepressor protein domain (pfam03374.4): HTH: 256-277; coiled-coil: 219-242} |
antagonism of C1 repression; forms Ant1/2-C1 complex |
|
Ant2*{RebB} |
as above (a shorter product of ant1) |
antagonism of C1 repression, forms complex with Ant1 |
|
r. 67-263 51% idt. to r. 144-345 of P1 Ant1; r. 52-259 49% idt. to r. 39-234 of phage HK022 DNA-binding protein Roi (NP_597902, 241 aa), similar to other phage antirepressor proteins |
unknown, expression can kill host |
||
{HTH: 57-78} |
lytic replication, initiates replication at oriL (within repL) |
||
51% idt. to putative protein of Shewanella oneidensis (NP_719790, 234 aa); 53% idt. to putative protein of Haemophilus somnus (ZP_00123450, 232 aa); r. 58-185 22% idt. to r. 58-192 of putative protein of Methanobacterium thermoformicicum pFV1 plasmid (YPV2_METTF, 284 aa) |
unknown; possibly replication-linked function |
this workS | |
33% idt. to putative protein of H. somnus (ZP_00123449, 173 aa); 40% idt. to putative protein of S. oneidensis (NP_719789, 165 aa) |
unknown; possibly replication-linked function |
this workS | |
r. 6-66 29% idt. to r. 17-75 of putative protein of Yersinia pestis (NP_667513, 214 aa) |
putative morphogenetic function |
this workS | |
r. 23-92 25% idt. to r. 93-183 of essential base plate hub subunit of T4-related phage RB49 (26_RB49T, 209 aa) |
baseplate |
this workS | |
putative morphogenetic function |
this workS | ||
baseplate or tail tube |
323[55], this workS | ||
gp22 {gp15?, C7?} |
{phage tail sheath protein domain (pfam 04984): 234-442} |
sheath protein |
|
gp23 {gp15?, C7?} |
r. 1-205 40% idt. to r. 1-201 of hypothetical P1-like plasmid protein of Serratia sp (AF468972.1); {TMH: 138-151} |
major head protein, present in P1 heads in a full length (62 kDa) and trunkated (44 kDa) form |
|
similar to centromere binding partition proteins of ParB/SopB family of low copy number plasmids and bacteria; {HTH: 166-187} |
active plasmid partitioning; binds to parS, enhances ParA-mediated repression of par operon and ATP-ase of ParA; can spread over DNA flanking parS, silencing gene expression; pairs parS loci |
4SD[57], 70[58], 73[59], 83[60], 90*[61], 114[62], 203SP[63], 258[64], 343[65] | |
similar to Walker-type partition ATPases of ParA/SopA family of low copy number plasmids and bacteria and to minD of E. coli and other bacteria |
active plasmid partitioning; weak ATP-ase, binds to parO repressing transcription, binds to ParB-parS partition complex |
||
72% idt. to replication initiation protein of Pantoea stewartii pSW1200 plasmid (AAB66323, 278 aa); 60% idt. to replication protein of Proteus vulgaris Rts1 plasmid (REPA_ECOLI, 288 aa); {HTH: 109-130} |
plasmid replication; chaperone-activated monomers initiate replication at oriR and repress own synthesis (via interaction with incC and incA); controls plasmid copy number; largely as inactive dimers |
||
46% idt. to Xenorhabdus nematophila putative prophage protein (CAB58447; 129 aa); 32% idt. to S. typhi putative prophage protein (NP_455522, 125 aa) |
unknown protein function |
this workS | |
r. 24-90 35% idt. to r. 1-67 of LysC lysis regulator of enterobacterial phage P2 (AAM83596, 96 aa) and 29% idt. to r. 1-67 of protein of unknown function of enterobacteria phage 186 (NP_052260, 96 aa); similar to Shigella flexnerii lipoprotein Mxim precursor involved in secretion of Ipa antigens (MXIM_SHIFL, 142 aa) {prokaryotic membrane lipoprotein lipid attachment site (Prosite: PS00013): 30-40; SP: 1-46} |
membrane lipoprotein precursor (by homology); possibly involved in regulation of lysis (by homology) |
this workS | |
{SP: 1-35} |
possible periplasmic function |
this workS | |
unknown protein function |
this workS | ||
r. 10-93 31% idt. to r. 10-96 of phage T4 gpORF5.4 (Y08B_BPT4, 97 aa) and 23% idt. to r. 10-92 of putative protein of Vibrio cholerae (Q9KN60; 94 aa) |
unknown protein function |
this workS | |
unknown; product of gene upstream of hrdC |
this workS | ||
61% idt. to E. coli nucleoid-associated putative recombination protein RdgC (RDGC_ECOLI, 303 aa); {DNA polymerase family A signature (PS00447): 117-136} |
homolog of RdgC of E. coli; possibly involved in replication, recombination or/and DmtA/B function |
this workS | |
Dmt {Dam} |
r. 404-672 51% idt. to putative DNA methylase of Salmonella enterica serovar Typhi CT18 (Q8Z7Y6; 293 aa); r. 4-247 58% idt. to r. 17-238 of cytosine-specific DNA methylase of Xylella fastidiosa (Q9PCK4; 537 aa); similar to other prokaryotic N-6 adenine and C-5 cytosine specific methyltransferases |
predicted bifunctional DNA methyltransferase; methylation of adenines in GATC sequences, and probably cytosines in unknown sequences (by homology); implicated in plasmid replication control, late gene expression, packaging; complements E. coli dam mutations |
|
tRNA1 |
90% idt. to predicted tRNA-Asn of Salmonella typhi plasmid pHCM2 (STYPPHCMH2) |
proposed tRNA-Asn specific for the AAC codon |
this workS |
tRNA2 |
83% idt. to predicted tRNA-UGC of Synechoystis sp. (SYCSLRB) |
proposed tRNA-Thr specific for the ACA codon |
this workS |
{prokaryotic lipoprotein attachment site (PS00013): 45-55} |
unknown; putative lipoprotein |
this workS | |
unknown; product of gene upstream of plp |
this workS | ||
41% idt. to putative TerB proteins of prophage of E. coli O157:H7 (BAB36172; 142a) and prophage CP-933R of E. coli O157:H7 EDL933 (E005369_13; 164 aa) |
tellurite or colicin resistance or inhibition of cell division (by homology) |
this workS | |
52% idt. to putative protein of cryptic prophage CP-933P of E. coli O157:H7 EDL933 (AE006460_9; 55 aa) and homologs; {SP: 1-39} |
Tci accessory protein (by homology) |
this workS | |
{TMH: 10-32} |
Tci accessory protein |
this workS | |
tRNA3 |
89% idt. to E. coli tRNA-Ile2, encoded by ileX (ECTRNAI) |
proposed tRNA-Ile specific for the ATA codon |
this workS |
78% idt. to E. coli replicative DNA helicases (DNAB_ECOLI, 471 aa) and S. typhimurium (DNAB_SALTY, 471 aa); similar to other prokaryotic replicative DNA helicases {HTH: 348-369; ATP/GTP-binding site motif A (P-loop): 217-224} |
DnaB analog; complements E. coli dnaB mutants (including a null mutant); replicative DNA helicase |
67, 195*S, 237, 254* | |
unknown; product of gene downstream of ban |
this workS | ||
r. 3-203 22% idt. to r. 361-549 of putative Microbulbifer degradans protein (ZP_00068017, 570 aa); r. 2-180 20% idt. to r. 18-186 of putative Mesorhizobium loti protein (NP_107041; 213 aa) |
baseplate |
323[55], this workS | |
gp6 {C5?} |
r. 174-333 19% idt. to r. 196-399 of gpORF194w of T4-like Aeh1 bacteriophage (Aeh1ORF194wT, 408 aa) |
tail length |
323[55], this workS |
gp24{C5?} |
baseplate or tail stability |
323[55], this workS | |
r. 35-165 25% idt. to r. 19-154 of Shewanella. oneidensis TPR domain protein (NP_716834, 282 aa) |
tail stability |
323[55], this workS | |
r. 277-403 similar to r. 1061-1186 of non-muscle myosin II heavy chain (MYSN_ ACACA; 1509 aa) and to r. 113-230 of Pseudomonas aeruginosa TolA (TOLA_PSEAE ; 347 aa) |
tail stability |
323[55], this workS | |
r. 48-90 32% idt. to r. 36-76 of essential baseplate wedge component of T4-like Aeh1 bacteriophage (53_Aeh1T, 188 aa) |
baseplate |
323[55] this workS | |
putative morphogenetic function |
this workS | ||
putative morphogenetic function |
this workS | ||
putative morphogenetic function |
this workS | ||
r. 20-198 32% idt. to r. 15-192 of ORF7 product of P. aeruginosa phage D3 (NP_061503; 198 aa) linked to gene for D3 major capsid protein; r. 66-198 31% idt. to r. 1-128 of ORF8 product of P. aeruginosa phage D3 (NP_061504; 134 aa) following ORF7 in D3 genome |
putative morphogenetic function |
this workS | |
putative morphogenetic function |
this workS | ||
64% idt. to phage λ serine/threonine protein phosphatase (PP_LAMBD, 221 aa) |
P1 protein phosphatase, possibly involved in head morphogenesis |
this workS | |
putative morphogenetic function |
this workS | ||
PmgR {gp8?} |
{TMH: 10-27} |
putative morphogenetic function |
this workS |
PmgS {gp8?} |
{coiled-coil domain: 75-220 (homologous to that of nonmuscle type myosins and SMC family proteins); HTH: 379-400} |
putative morphogenetic function; possible prohead scaffolding protein |
this workS |
r. 12-143 25% idt. to r. 6-129 of putative protein SCO0916 of Streptomyces coelicolor (Q9RCZ4; 163 aa); r. 10-148 25% idt. to r. 156-291 of phage T4 polynucleotide kinase (PNKL_BPT4, 301 aa) |
P1 acid phosphatase (by homology); possibly involved in head morphogenesis |
this workS | |
r. 5-239 55% idt. to r. 12-237 of S. typhi hypothetical protein (NP_569253, 243 aa), and 38% idt. to r. 4-219 of Myxococcus xantus phage Mx8 p14 protein (NP_203428, 222 aa) |
putative morphogenetic function |
this workS | |
r. 12-55 46% idt. to r. 56-99 of ORF005c product of unknown function of T4-related phage RB49 (RB49ORF005cT; 99 aa) |
putative morphogenetic function |
this workS | |
putative morphogenetic function |
this workS | ||
unknown protein function |
this workS | ||
unknown protein function |
this workS | ||
unknown protein function |
this workS | ||
r. 5-73 61% idt. to r. 4-68 of theta subunit of E. coli DNA polymerase III (HOLE_ECOLI, 76 aa) |
homolog of theta subunit of DNA polymerase III; possibly involved in phage DNA replication |
this workS | |
{coiled-coil domain: 157-180} |
LexA regulated function |
this workS | |
69% idt. to UmuD homolog, gp26, of coliphage N15 (NP_046921, 128 aa); 42% idt. to processed UmuD of E. coli (BAA36030, 139 aa) |
homolog of UmuD' subunit of E. coli DNA polymerase V (UmuD'UmuC); complements E. coli UmuD' defects; DNA repair |
||
100% idt. to its homolog in E. coli (CAA66837, 73 aa) |
prevention of host death by Doc toxicity; confers, with Doc, addiction to P1; inactivated by ClpXP protease; represses transcription of addiction operon |
||
97% idt. to its homolog in E. coli (CAA66836, 126 aa) |
death on curing; toxin of P1 addiction system; reversible inhibitor of protein synthesis; corepressor of addiction operon |
||
unknown; post-doc |
192S[77], this work | ||
PdcB {gp ORF93} |
25% idt. to putative protein of E. coli (NP_ 416078, 362 aa), and E. coli O157:H7 CP-933N prophage protein (NP_287276, 349 aa), and to their homologs |
unknown; post-doc |
192SD[77], this work |
Lpa* {gp10} |
late promoter activator |
||
PacA* {gp9} |
{HTH: 19-40} |
DNA packaging; cuts at pac together with PacB |
|
{ATP/GTP-binding site motif A(P-loop): 26-33; TMH: 68-85} |
DNA packaging; cuts at pac together with PacA |
||
99% idt. to C1 repressor of enterobacteria phage P7 (RPC1_BPP7, 283 aa); {HTH: 97-128} |
controls plaque clarity; primary repressor of lytic functions |
||
Coi* {gpORF4} |
C one inactivator; forms 1:1 non-covalent complex with C1 reversibly inactivating it |
||
ImcB {gpORF3} |
immunity C function; may regulate c1 |
||
ImcA {gpORF2} |
immunity C function; may regulate c1 |
||
edit table |
</protect>
a Gene products marked by an asterisk were either purified or identified in PAGE gels.
b Coordinates of genes refer to their positions in the P1 c1-100 mod749::IS5 genome without its non-integral parts, IS5 and the associated 4-bp duplication. Coordinates of protein-coding genes are from the initial codon through the first stop codon.
c Conserved motifs of amino acid sequences were detected as described in Materials and Methods. Motif abbreviations used: HTH: helix-turn-helix, TMH: transmembrane helix, SP: signal peptide. The name of each motif is followed by its coordinates in the protein sequence. Abbreviations used to describe homologies: r.: region of amino acid residues, idt.: identical. Accession numbers or locus names of P1 protein homologs in data bases as well as their lengths in amino acid residues (aa) are given in parentheses. Amino acid sequences of P1 protein homologs marked with a superscript T can be found in the T4 and T4-like phages data base (http://phage.bioc.tulane.edu/).
d References marked by an asterisk concern identification of a protein or RNA product of a given gene; those marked by a superscript S concern previously published sequences. Superscript SD, published sequence differs internally from sequences presented here; superscript SP, published sequence is partial.
References
- ↑ Łobocka, MB et al. (2004) Genome of bacteriophage P1. J. Bacteriol. 186 7032-68 PubMed
- ↑ 2.0 2.1 Sternberg, N et al. (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J. Mol. Biol. 187 197-212 PubMed
- ↑ Sternberg, N & Hamilton, D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150 467-86 PubMed
- ↑ Adams, DE et al. (1992) Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J. Mol. Biol. 226 661-73 PubMed
- ↑ Austin, S et al. (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25 729-36 PubMed
- ↑ Guo, F et al. (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389 40-6 PubMed
- ↑ Kwon, HJ et al. (1997) Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276 126-31 PubMed
- ↑ Scott, JR et al. (1977) Clear plaque mutants of phage P7. Virology 76 39-46 PubMed
- ↑ Scott, JR & Kropf, MM (1977) Location of new clear plaque genes on the P1 map. Virology 82 362-8 PubMed
- ↑ Laufer, CS et al. (1989) Enhancement of Escherichia coli plasmid and chromosomal recombination by the Ref function of bacteriophage P1. Genetics 123 465-76 PubMed
- ↑ Lu, SD et al. (1989) Stimulation of IS1 excision by bacteriophage P1 ref function. J. Bacteriol. 171 3427-32 PubMed
- ↑ Windle, BE & Hays, JB (1986) A phage P1 function that stimulates homologous recombination of the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U.S.A. 83 3885-9 PubMed
- ↑ Windle, BE et al. (1988) Sequence and deletion analysis of the recombination enhancement gene (ref) of bacteriophage P1: evidence for promoter-operator and attenuator-antiterminator control. J. Bacteriol. 170 4881-9 PubMed
- ↑ Lehnherr, H et al. (2001) Dual regulatory control of a particle maturation function of bacteriophage P1. J. Bacteriol. 183 4105-9 PubMed
- ↑ Dartois, V et al. (1993) Sequence of the Salmonella typhimurium StyLT1 restriction-modification genes: homologies with EcoP1 and EcoP15 type-III R-M systems and presence of helicase domains. Gene 127 105-10 PubMed
- ↑ 16.0 16.1 Hadi, SM et al. (1983) DNA restriction--modification enzymes of phage P1 and plasmid p15B. Subunit functions and structural homologies. J. Mol. Biol. 165 19-34 PubMed
- ↑ 17.0 17.1 Hümbelin, M et al. (1988) Type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J. Mol. Biol. 200 23-9 PubMed
- ↑ 18.0 18.1 18.2 Iida, S et al. (1983) DNA restriction--modification genes of phage P1 and plasmid p15B. Structure and in vitro transcription. J. Mol. Biol. 165 1-18 PubMed
- ↑ Brockes, JP et al. (1972) The deoxyribonucleic acid modification enzyme of bacteriophage P1. Biochem. J. 127 1-10 PubMed
- ↑ Brockes, JP et al. (1974) Nucleotide sequences at the sites of action of the deoxyribonucleic acid modification enzyme of bacteriophage P1. J. Mol. Biol. 88 437-43 PubMed
- ↑ Rosner, JL (1973) Modification-deficient mutants of bacteriophage P1. I. Restriction by P1 cryptic lysogens. Virology 52 213-22 PubMed
- ↑ Johnson, BF (1982) Suppression of the lexC (ssbA) mutation of Escherichia coli by a mutant of bacteriophage P1. Mol. Gen. Genet. 186 122-6 PubMed
- ↑ Schaefer, TS & Hays, JB (1990) The bof gene of bacteriophage P1: DNA sequence and evidence for roles in regulation of phage c1 and ref genes. J. Bacteriol. 172 3269-77 PubMed
- ↑ Touati-Schwartz, D (1979) A new pleiotropic bacteriophage P1 mutation, bof, affecting c1 repression activity, the expression of plasmid incompatibility and the expression of certain constitutive prophage genes. Mol. Gen. Genet. 174 189-202 PubMed
- ↑ Velleman, M et al. (1990) A bacteriophage P1-encoded modulator protein affects the P1 c1 repression system. J. Biol. Chem. 265 18511-7 PubMed
- ↑ 26.0 26.1 Iida, S et al. (1987) Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA- phages. Virology 157 156-66 PubMed
- ↑ Walker, DH Jr & Walker, JT (1976) Genetic studies of coliphage P1. III. Extended genetic map. J. Virol. 20 177-87 PubMed
- ↑ Walker, JT & Walker, DH (1980) Mutations in coliphage p1 affecting host cell lysis. J. Virol. 35 519-30 PubMed
- ↑ 29.0 29.1 29.2 Schmidt, C et al. (1996) Three functions of bacteriophage P1 involved in cell lysis. J. Bacteriol. 178 1099-104 PubMed
- ↑ Lehnherr, H et al. (1999) Identification and characterization of the single-stranded DNA-binding protein of bacteriophage P1. J. Bacteriol. 181 6463-8 PubMed
- ↑ 31.0 31.1 31.2 31.3 31.4 31.5 31.6 31.7 Iida, S et al. (1998) Accessory genes in the darA operon of bacteriophage P1 affect antirestriction function, generalized transduction, head morphogenesis, and host cell lysis. Virology 251 49-58 PubMed
- ↑ Haffter, P & Bickle, TA (1987) Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. J. Mol. Biol. 198 579-87 PubMed
- ↑ Hiestand-Nauer, R & Iida, S (1983) Sequence of the site-specific recombinase gene cin and of its substrates serving in the inversion of the C segment of bacteriophage P1. EMBO J. 2 1733-40 PubMed
- ↑ Huber, HE et al. (1985) Expression of the bacteriophage P1 cin recombinase gene from its own and heterologous promoters. Gene 34 63-72 PubMed
- ↑ Iida, S et al. (1984) The bacteriophage P1 site-specific recombinase cin: recombination events and DNA recognition sequences. Cold Spring Harb. Symp. Quant. Biol. 49 769-77 PubMed
- ↑ 36.0 36.1 36.2 Iida, S (1984) Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome. Virology 134 421-34 PubMed
- ↑ 37.0 37.1 37.2 Guidolin, A et al. (1989) Organization of the bacteriophage P1 tail-fibre operon. Gene 76 239-43 PubMed
- ↑ 38.0 38.1 Lehnherr, H et al. (1998) Penetration of the bacterial cell wall: a family of lytic transglycosylases in bacteriophages and conjugative plasmids. Mol. Microbiol. 30 454-7 PubMed
- ↑ Devlin, BH et al. (1982) Superimmunity: characterization of a new gene in the immunity region of P1. Virology 120 360-75 PubMed
- ↑ Kliem, M & Dreiseikelmann, B (1989) The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 171 350-5 PubMed
- ↑ Lukashin, AV & Borodovsky, M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26 1107-15 PubMed
- ↑ Maillou, J & Dreiseikelmann, B (1990) The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 175 500-7 PubMed
- ↑ Baumstark, BR & Scott, JR (1987) The c4 gene of phage P1. Virology 156 197-203 PubMed
- ↑ 44.0 44.1 44.2 Biere, AL et al. (1992) Transcriptional control via translational repression by c4 antisense RNA of bacteriophages P1 and P7. Genes Dev. 6 2409-16 PubMed
- ↑ Citron, M & Schuster, H (1992) The c4 repressor of bacteriophage P1 is a processed 77 base antisense RNA. Nucleic Acids Res. 20 3085-90 PubMed
- ↑ Citron, M & Schuster, H (1990) The c4 repressors of bacteriophages P1 and P7 are antisense RNAs. Cell 62 591-8 PubMed
- ↑ 47.0 47.1 47.2 47.3 47.4 Hansen, EB (1989) Structure and regulation of the lytic replicon of phage P1. J. Mol. Biol. 207 135-49 PubMed
- ↑ Hartmann, RK et al. (1995) Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92 5822-6 PubMed
- ↑ Heinrich, J et al. (1994) Second-site suppressors of the bacteriophage P1 virs mutant reveal the interdependence of the c4, icd, and ant genes in the P1 immI operon. J. Bacteriol. 176 4931-6 PubMed
- ↑ 50.0 50.1 50.2 Heisig, A et al. (1989) Organization of the immunity region immI of bacteriophage P1 and synthesis of the P1 antirepressor. J. Mol. Biol. 209 525-38 PubMed
- ↑ Riedel, HD et al. (1993) Cloning, expression, and characterization of the icd gene in the immI operon of bacteriophage P1. J. Bacteriol. 175 2833-8 PubMed
- ↑ Heilmann, H et al. (1980) Identification of the repressor and repressor bypass (antirepressor) polypeptides of bacteriophage P1 synthesized in infected minicells. Mol. Gen. Genet. 178 149-54 PubMed
- ↑ 53.0 53.1 Riedel, HD et al. (1993) The antirepressor of phage P1. Isolation and interaction with the C1 repressor of P1 and P7. FEBS Lett. 334 165-9 PubMed
- ↑ 54.0 54.1 Sternberg, N & Cohen, G (1989) Genetic analysis of the lytic replicon of bacteriophage P1. II. Organization of replicon elements. J. Mol. Biol. 207 111-33 PubMed
- ↑ 55.0 55.1 55.2 55.3 55.4 55.5 55.6 55.7 55.8 Walker, JT & Walker, DH Jr (1983) Coliphage P1 morphogenesis: analysis of mutants by electron microscopy. J. Virol. 45 1118-39 PubMed
- ↑ 56.0 56.1 Walker, JT & Walker, DH Jr (1981) Structural proteins of coliphage P1. Prog. Clin. Biol. Res. 64 69-77 PubMed
- ↑ 57.0 57.1 Abeles, AL et al. (1985) Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organization of the P1 partition region. J. Mol. Biol. 185 261-72 PubMed
- ↑ 58.0 58.1 Davey, MJ & Funnell, BE (1997) Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J. Biol. Chem. 272 15286-92 PubMed
- ↑ 59.0 59.1 Davis, MA et al. (1992) Biochemical activities of the parA partition protein of the P1 plasmid. Mol. Microbiol. 6 1141-7 PubMed
- ↑ Edgar, R et al. (2001) Pairing of P1 plasmid partition sites by ParB. Mol. Microbiol. 42 1363-70 PubMed
- ↑ Funnell, BE (1991) The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J. Biol. Chem. 266 14328-37 PubMed
- ↑ Hao, JJ & Yarmolinsky, M (2002) Effects of the P1 plasmid centromere on expression of P1 partition genes. J. Bacteriol. 184 4857-67 PubMed
- ↑ Lobocka, M & Yarmolinsky, M (1996) P1 plasmid partition: a mutational analysis of ParB. J. Mol. Biol. 259 366-82 PubMed
- ↑ Rodionov, O et al. (1999) Silencing of genes flanking the P1 plasmid centromere. Science 283 546-9 PubMed
- ↑ 65.0 65.1 Yamaichi, Y & Niki, H (2000) Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97 14656-61 PubMed
- ↑ Bouet, JY & Funnell, BE (1999) P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J. 18 1415-24 PubMed
- ↑ Abeles, AL (1986) P1 plasmid replication. Purification and DNA-binding activity of the replication protein RepA. J. Biol. Chem. 261 3548-55 PubMed
- ↑ Abeles, AL & Austin, SJ (1991) Antiparallel plasmid-plasmid pairing may control P1 plasmid replication. Proc. Natl. Acad. Sci. U.S.A. 88 9011-5 PubMed
- ↑ Abeles, AL et al. (1984) P1 plasmid replication: replicon structure. J. Mol. Biol. 173 307-24 PubMed
- ↑ Chattoraj, DK (2000) Control of plasmid DNA replication by iterons: no longer paradoxical. Mol. Microbiol. 37 467-76 PubMed
- ↑ Chattoraj, DK et al. (1985) P1 plasmid replication: multiple functions of RepA protein at the origin. Proc. Natl. Acad. Sci. U.S.A. 82 2588-92 PubMed
- ↑ Citron, M et al. (1989) Three additional operators, Op21, Op68, and Op88, of bacteriophage P1. Evidence for control of the P1 dam methylase by Op68. J. Biol. Chem. 264 3611-7 PubMed
- ↑ Coulby, JN & Sternberg, NL (1988) Characterization of the phage P1 dam gene. Gene 74 191 PubMed
- ↑ Lewis, LK et al. (1994) Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 241 507-23 PubMed
- ↑ McLenigan, MP et al. (1999) The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD'-like proteins and facilitates SOS mutagenesis in Escherichia coli. J. Bacteriol. 181 7005-13 PubMed
- ↑ 76.0 76.1 Gazit, E & Sauer, RT (1999) The Doc toxin and Phd antidote proteins of the bacteriophage P1 plasmid addiction system form a heterotrimeric complex. J. Biol. Chem. 274 16813-8 PubMed
- ↑ 77.0 77.1 77.2 77.3 Lehnherr, H et al. (1993) Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233 414-28 PubMed
- ↑ Lehnherr, H & Yarmolinsky, MB (1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92 3274-7 PubMed
- ↑ 79.0 79.1 Magnuson, R et al. (1996) Autoregulation of the plasmid addiction operon of bacteriophage P1. J. Biol. Chem. 271 18705-10 PubMed
- ↑ Hazan, R et al. (2001) Postsegregational killing mediated by the P1 phage "addiction module" phd-doc requires the Escherichia coli programmed cell death system mazEF. J. Bacteriol. 183 2046-50 PubMed
- ↑ Magnuson, R & Yarmolinsky, MB (1998) Corepression of the P1 addiction operon by Phd and Doc. J. Bacteriol. 180 6342-51 PubMed
- ↑ Hansen, AM et al. (2003) Escherichia coli SspA is a transcription activator for bacteriophage P1 late genes. Mol. Microbiol. 48 1621-31 PubMed
- ↑ Lehnherr, H et al. (1991) Bacteriophage P1 gene 10 encodes a trans-activating factor required for late gene expression. J. Bacteriol. 173 6438-45 PubMed
- ↑ 84.0 84.1 Skorupski, K et al. (1992) Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J. Mol. Biol. 223 977-89 PubMed
- ↑ Skorupski, K et al. (1994) Purification and DNA-binding activity of the PacA subunit of the bacteriophage P1 pacase enzyme. J. Mol. Biol. 243 258-67 PubMed
- ↑ Skorupski, K et al. (1994) Faithful cleavage of the P1 packaging site (pac) requires two phage proteins, PacA and PacB, and two Escherichia coli proteins, IHF and HU. J. Mol. Biol. 243 268-82 PubMed
- ↑ Dreiseikelmann, B et al. (1988) The c1 repressor of bacteriophage P1. Isolation and characterization of the repressor protein. J. Biol. Chem. 263 1391-7 PubMed
- ↑ 88.0 88.1 88.2 88.3 Eliason, JL & Sternberg, N (1987) Characterization of the binding sites of c1 repressor of bacteriophage P1. Evidence for multiple asymmetric sites. J. Mol. Biol. 198 281-93 PubMed
- ↑ Heinrich, J et al. (1989) The c1 repressor of bacteriophage P1 operator-repressor interaction of wild-type and mutant repressor proteins. Nucleic Acids Res. 17 7681-92 PubMed
- ↑ Osborne, FA et al. (1989) The c1 genes of P1 and P7. Nucleic Acids Res. 17 7671-80 PubMed
- ↑ Velleman, M et al. (1987) Multiple repressor binding sites in the genome of bacteriophage P1. Proc. Natl. Acad. Sci. U.S.A. 84 5570-4 PubMed
- ↑ Velleman, M & Parbus, S (1992) Purification of the C1 repressor of bacteriophage P1 by fast protein liquid chromatography. J. Chromatogr. 625 41-6 PubMed
- ↑ Baumstark, BR et al. (1990) The ImmC region of phage P1 codes for a gene whose product promotes lytic growth. Virology 179 217-27 PubMed
- ↑ 94.0 94.1 94.2 Baumstark, BR et al. (1987) Interaction of the P1c1 repressor with P1 DNA: localization of repressor binding sites near the c1 gene. Virology 156 404-13 PubMed
- ↑ Heinzel, T et al. (1990) The c1 repressor inactivator protein coi of bacteriophage P1. Cloning and expression of coi and its interference with c1 repressor function. J. Biol. Chem. 265 17928-34 PubMed
- ↑ Heinzel, T et al. (1992) C1 repressor of phage P1 is inactivated by noncovalent binding of P1 Coi protein. J. Biol. Chem. 267 4183-8 PubMed