PMID:9671708

From EcoliWiki
Jump to: navigation, search
Citation

Saparbaev, M and Laval, J (1998) 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 95:8508-13

Abstract

Exocyclic DNA adducts are generated in cellular DNA by various industrial pollutants such as the carcinogen vinyl chloride and by endogenous products of lipid peroxidation. The etheno derivatives of purine and pyrimidine bases 3,N4-ethenocytosine (epsilonC), 1, N6-ethenoadenine (epsilonA), N2,3-ethenoguanine, and 1, N2-ethenoguanine cause mutations. The epsilonA residues are excised by the human and the Escherichia coli 3-methyladenine-DNA glycosylases (ANPG and AlkA proteins, respectively), but the enzymes repairing epsilonC residues have not yet been described. We have identified two homologous proteins present in human cells and E. coli that remove epsilonC residues by a DNA glycosylase activity. The human enzyme is an activity of the mismatch-specific thymine-DNA glycosylase (hTDG). The bacterial enzyme is the double-stranded uracil-DNA glycosylase (dsUDG) that is the homologue of the hTDG. In addition to uracil and epsilonC-DNA glycosylase activity, the dsUDG protein repairs thymine in a G/T mismatch. The fact that epsilonC is recognized and efficiently excised by the E. coli dsUDG and hTDG proteins in vitro suggests that these enzymes may be responsible for the repair of this mutagenic lesion in vivo and be important contributors to genetic stability.

Links

PubMed PMC21106

Keywords

Amino Acid Sequence; Base Sequence; Cytosine/analogs & derivatives; Cytosine/metabolism; DNA Adducts; DNA Glycosylases; Deoxyribonuclease (Pyrimidine Dimer); Endodeoxyribonucleases/metabolism; Escherichia coli/enzymology; Kinetics; Mutagens; N-Glycosyl Hydrolases/metabolism; Nucleic Acid Heteroduplexes; Oligodeoxyribonucleotides; Substrate Specificity; Uracil-DNA Glycosidase

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<annotationlinks/>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

References

See Help:References for how to manage references in EcoliWiki.