PMID:9092651

From EcoliWiki
Jump to: navigation, search
Citation

Bradley, TM, Hidalgo, E, Leautaud, V, Ding, H and Demple, B (1997) Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation. Nucleic Acids Res. 25:1469-75

Abstract

The Escherichia coli soxRS regulon activates oxidative stress and antibiotic resistance genes in two transcriptional stages. SoxR protein becomes activated in cells exposed to excess superoxide or nitric oxide and then stimulates transcription of the soxS gene, whose product in turn activates>/=10 regulon promoters. Purified SoxR protein is a homodimer containing a pair of [2Fe-2S] centers essential for soxS transcription in vitro . The [2Fe-2S] centers are thought to be anchored by a C-terminal cluster of four cysteine residues in SoxR. Here we analyze mutant SoxR derivatives with individual cysteines replaced by alanine residues (Cys-->Ala). The mutant proteins in cell-free extracts bound the soxS promoter with wild-type affinity, but upon purification lacked Fe or detectable transcriptional activity for soxS in vitro . Electron paramagnetic resonance measurements in vivo indicated that the Cys-->Ala proteins lacked the [2Fe-2S] centers seen for wild-type SoxR. The Cys-->Ala mutant proteins failed to activate soxS expression in vivo in response to paraquat, a superoxide- generating agent. However, when expressed to approximately 5% of the cell protein, the Cys-->Ala derivatives increased basal soxS transcription 2-4-fold. Overexpression of the Cys119-->Ala mutant protein strongly interfered with soxS activation by wild-type SoxR in response to paraquat. These studies demonstrate the essential role of the [2Fe-2S] centers for SoxR activation in vivo ; the data may also indicate oxidant-independent mechanisms of transcriptional activation by SoxR.

Links

PubMed PMC146616

Keywords

Alanine; Bacterial Proteins/chemistry; Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Base Sequence; Cysteine; DNA Primers; Electron Spin Resonance Spectroscopy; Escherichia coli/genetics; Escherichia coli/metabolism; Iron-Sulfur Proteins/chemistry; Iron-Sulfur Proteins/metabolism; Mutagenesis, Site-Directed; Point Mutation; Polymerase Chain Reaction; Recombinant Fusion Proteins/metabolism; Transcription Factors/chemistry; Transcription Factors/genetics; Transcription Factors/metabolism; Transcription, Genetic; Transcriptional Activation; beta-Galactosidase/metabolism

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<annotationlinks/>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

References

See Help:References for how to manage references in EcoliWiki.