PMID:8756703

From EcoliWiki
Jump to: navigation, search
Citation

Park, IS, Lin, CH and Walsh, CT (1996) Gain of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35:10464-71

Abstract

Escherichia coli D-Ala-D-Ala ligase (Ddl) and the vancomycin resistance-conferring protein VanA are homologues, but VanA has gained the ability to activate D-lactate (D-Lac) and make the depsipeptide D-Ala-D-Lac as well as D-Ala-D-Ala. This depsipeptide ligase activity of VanA is its crucial catalytic function necessary for phenotypic vancomycin resistance. We report here that three E. coli DdlB active-site mutants that we made previously based on X-ray structure/function predictions have gained interesting new ligase activities. Y216, S150, and E15 form a hydrogen-bonding triad that orients an omega-loop to close over the active site and also to orient substrate D-Ala1. Mutants Y216F and S150A have gained depsipeptide (D-Ala-D-Lac, D-Ala-D-hydroxybutyrate) ligase activity with dipeptide/depsipeptide partition ratios that mimic the pH behavior of VanA. E15Q has negligible depsipeptide synthetase activity but now uniquely activates D-Lac as the electrophilic rather than the nucleophilic partner for condensation with D-Ala to make a regioisomeric D-Lac-D-Ala, an amide rather than an ester product. These results provide insights into the active-site architecture of the ligases and the subsites for recognition of D-Ala VS D-Lac and predict the Y216F substitution will impart D-Ala-D-Lac synthetase activity to Ddls from Grampositive bacteria with intrinsic resistance to vancomycin.

Links

PubMed Online version:10.1021/bi9603128

Keywords

Alanine/analogs & derivatives; Alanine/metabolism; Anti-Bacterial Agents/pharmacology; Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Binding Sites; Carbon-Oxygen Ligases; Drug Resistance; Escherichia coli/enzymology; Hydrogen-Ion Concentration; Lactates/metabolism; Ligases/genetics; Ligases/metabolism; Mutation; Peptide Synthases/metabolism; Substrate Specificity; Vancomycin/pharmacology

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<annotationlinks/>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

References

See Help:References for how to manage references in EcoliWiki.