PMID:7813452

From EcoliWiki
Jump to: navigation, search
Citation

Higgins, RR and Becker, A (1994) Chromosome end formation in phage lambda, catalyzed by terminase, is controlled by two DNA elements of cos, cosN and R3, and by ATP. EMBO J. 13:6152-61

Abstract

The terminase enzyme of phage lambda is a site-specific endonuclease that nicks DNA concatemers to regenerate the 12 nucleotide cohesive ends of the mature chromosome. The enzyme's DNA target, cos, consists of a nicking domain, cosN, and a binding domain, cosB. cosB, situated to the right of cosN, comprises three 16 bp repeat sequences, R1, R2 and R3. A similar sequence, R4, is present to the left of cosN. It is shown here that terminase has an intrinsic specificity for cosN which is independent of the R sites. The interaction with cosN is mediated by binding to target sites that include 12 bp on the 5', and 2-7 bp on the 3' side of the nick. Of the four R sites, only R3 is required for the proper formation of ends. When R3 is present, an ATP-charged terminase system correctly catalyzes the production of staggered nicks in cosN, at sites N1 and N2 on the bottom and top strands, respectively. When ATP is omitted, the bottom strand is nicked incorrectly, at the site Nx, 8 bp to the left of N1. If R3 is removed or disabled by a point mutation, nicking in cosN becomes dependent upon ATP but, even in the presence of ATP, bottom strand nicking is divided between sites N1, the correct site, and Nx, the incorrect one. Thus, R3 is an important regulatory element and must reside in cis in respect to cosN. Furthermore, cosN substrates bearing point mutations at N1 and N2 are nicked at sites Nx and Ny, 8 bp to the left of N1 and N2, respectively. When R3 is present and ATP is added, nicking is redirected to the N1 and N2 positions despite the mutations present. Thus, terminase binding to R3, on one side of cosN, regulates the rotationally symmetric nicking reactions on the bottom and top strands within cosN.

Links

PubMed PMC395595

Keywords

Adenosine Triphosphate/metabolism; Bacteriophage lambda/enzymology; Bacteriophage lambda/genetics; Bacteriophage lambda/growth & development; Base Sequence; DNA Damage; DNA, Circular/genetics; DNA, Circular/metabolism; DNA, Recombinant; DNA, Viral/genetics; DNA, Viral/metabolism; Endodeoxyribonucleases/metabolism; Molecular Sequence Data; Point Mutation; Protein Binding; Repetitive Sequences, Nucleic Acid; Substrate Specificity

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<annotationlinks/>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

See also

References

See Help:References for how to manage references in EcoliWiki.