PMID:410789

From EcoliWiki
Jump to: navigation, search
Citation

Irani, MH and Maitra, PK (1977) Properties of Escherichia coli mutants deficient in enzymes of glycolysis. J. Bacteriol. 132:398-410

Abstract

Physiological properties of mutants of Escherichia coli defective in glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, or enolase are described. Introduction of a lesion in any one of the reversible steps catalyzed by these enzymes impaired both the glycolytic and gluconeogenic capabilities of the cell and generated an obligatory requirement for a source of carbon above the block (gluconeogenic) and one below (oxidative). A mixture of glycerol and succinate supported the growth of these mutants. Mutants lacking glyceraldehyde 3-phosphate dehydrogenase and glycerate 3-phosphate kinase could grow also on glycerol and glyceric acid, and enolase mutants could grow on glycerate and succinate, whereas double mutants lacking the kinase and enolase required l-serine in addition to glycerol and succinate. Titration of cell yield with limiting amounts of glycerol with Casamino Acids in excess, or vice versa, showed the gluconeogenic requirement of a growing culture of E. coli to be one-twentieth of its total catabolic and anabolic needs. Sugars and their derivatives inhibited growth of these mutants on otherwise permissive media. The mutants accumulated glycolytic intermediates above the blocked enzyme on addition of glucose or glycerol to resting cultures. Glucose inhibited growth and induced lysis. These effects could be substantially overcome by increasing the osmotic strength of the growth medium and, in addition, including 5 mM cyclic adenosine 3',5'-monophosphate therein. This substance countered to a large extent the severe repression of beta-galactosidase synthesis that glucose caused in these mutants.

Links

PubMed PMC221878

Keywords

Carbohydrate Metabolism; Escherichia coli/enzymology; Escherichia coli/genetics; Escherichia coli/metabolism; Gluconeogenesis; Glucose/metabolism; Glyceraldehyde-3-Phosphate Dehydrogenases/biosynthesis; Glyceraldehyde-3-Phosphate Dehydrogenases/genetics; Glyceric Acids/metabolism; Glycerol/metabolism; Glycolysis; Mutation; Phosphoglycerate Kinase/biosynthesis; Phosphoglycerate Kinase/genetics; Phosphopyruvate Hydratase/biosynthesis; Phosphopyruvate Hydratase/genetics; Serine/metabolism; Succinates/metabolism; beta-Galactosidase/biosynthesis

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<annotationlinks/>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

References

See Help:References for how to manage references in EcoliWiki.