PMID:2254246

From EcoliWiki
Jump to: navigation, search
Citation

Begg, KJ, Takasuga, A, Edwards, DH, Dewar, SJ, Spratt, BG, Adachi, H, Ohta, T, Matsuzawa, H and Donachie, WD (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172:6697-703

Abstract

The rodA(Sui) mutation allows cell division to take place at 42 degrees C in ftsI23 mutant cells, which produce a thermolabile penicillin-binding protein 3 (PBP3, the septation-specific peptidoglycan transpeptidase). We show here that the mutation in rodA is a single-base change from a glutamine to a chain termination (amber) codon, and that an amber suppressor (supE) present in the strain restores the ability to produce a reduced level of normal RodA protein. The reduced level of RodA is accompanied by an increase in the levels of two other proteins (PBP2 and PBP5) encoded by genes in the rodA operon. We show that an increased level of PBP5 is by itself sufficient to restore cell division to ftsI23 cells at 42 degrees C. Two other treatments were found to restore division capacity to the mutant: an increase in PBP6 (which is a D-alanine carboxypeptidase like PBP5) or suitable concentrations of D-cycloserine. All of the above treatments have the effect of reducing the number of pentapeptide side chains in peptidoglycan and increasing the number of tripeptides. We conclude that the effect of the rodA(Sui) mutation is to indirectly increase the availability of tripeptide side chains, which are used preferentially by PBP3 as acceptors in transpeptidation. A change in the proportions of different kinds of peptide side chain in the peptidoglycan can therefore determine whether cells will divide.

Links

PubMed PMC210782

Keywords

Alleles; Bacterial Proteins; Base Sequence; Carbohydrate Sequence; Carrier Proteins/metabolism; Cell Division; DNA Mutational Analysis; Escherichia coli/cytology; Escherichia coli/growth & development; Escherichia coli Proteins; Gene Expression Regulation, Bacterial; Hexosyltransferases; Molecular Sequence Data; Muramoylpentapeptide Carboxypeptidase/metabolism; Oligonucleotides; Penicillin-Binding Proteins; Peptidoglycan/metabolism; Peptidoglycan Glycosyltransferase; Peptidyl Transferases; Temperature

Significance

You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.

Annotations

<protect><annotationlinks/></protect>

EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

See also

References

See Help:References for how to manage references in EcoliWiki.