From EcoliWiki
Jump to: navigation, search

Minnihan, EC, Seyedsayamdost, MR and Stubbe, J (2009) Use of 3-aminotyrosine to examine the pathway dependence of radical propagation in Escherichia coli ribonucleotide reductase. Biochemistry 48:12125-32


Escherichia coli ribonucleotide reductase (RNR), an alpha2beta2 complex, catalyzes the conversion of nucleoside 5'-diphosphate substrates (S) to 2'-deoxynucleoside 5'-diphosphates. alpha2 houses the active site for nucleotide reduction and the binding sites for allosteric effectors (E). beta2 contains the essential diferric tyrosyl radical (Y(122)(*)) cofactor which, in the presence of S and E, oxidizes C(439) in alpha to a thiyl radical, C(439)(*), to initiate nucleotide reduction. This oxidation occurs over 35 A and is proposed to involve a specific pathway: Y(122)(*) --> W(48) --> Y(356) in beta2 to Y(731) --> Y(730) --> C(439) in alpha2. 3-Aminotyrosine (NH(2)Y) has been site-specifically incorporated at residues 730 and 731, and formation of the aminotyrosyl radical (NH(2)Y(*)) has been examined by stopped-flow (SF) UV-vis and EPR spectroscopies. To examine the pathway dependence of radical propagation, the double mutant complexes Y(356)F-beta2:Y(731)NH(2)Y-alpha2, Y(356)F-beta2:Y(730)NH(2)Y-alpha2, and wt-beta2:Y(731)F/Y(730)NH(2)Y-alpha2, in which the nonoxidizable F acts as a pathway block, were studied by SF and EPR spectroscopies. In all cases, no NH(2)Y(*) was detected. To study off-pathway oxidation, Y(413), located 5 A from Y(730) and Y(731) but not implicated in long-range oxidation, was examined. Evidence for NH(2)Y(413)(*) was sought in three complexes: wt-beta2:Y(413)NH(2)Y-alpha2 (a), wt-beta2:Y(731)F/Y(413)NH(2)Y-alpha2 (b), and Y(356)F-beta2:Y(413)NH(2)Y-alpha2 (c). With (a), NH(2)Y(*) was formed with a rate constant that was 25-30% and an amplitude that was 25% of that observed for its formation at residues 731 and 730. With (b), the rate constant for NH(2)Y(*) formation was 0.2-0.3% of that observed at 731 and 730, and with (c), no NH(2)Y(*) was observed. These studies suggest the evolution of an optimized pathway of conserved Ys in the oxidation of C(439).


PubMed PMC2917095 Online version:10.1021/bi901439w


Electron Spin Resonance Spectroscopy; Electron Transport; Escherichia coli/chemistry; Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli Proteins/chemistry; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism; Free Radicals/chemistry; Oxidation-Reduction; Ribonucleoside Diphosphate Reductase/chemistry; Ribonucleoside Diphosphate Reductase/genetics; Ribonucleoside Diphosphate Reductase/metabolism; Tyrosine/analogs & derivatives; Tyrosine/chemistry


You can help EcoliWiki by summarizing why this paper is useful

Useful Materials and Methods

You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.



EcoliWiki Links

Add links to pages that link here (e.g. gene, product, method pages)

See also


See Help:References for how to manage references in EcoliWiki.