PMID:17322202
Citation |
Geissler, B, Shiomi, D and Margolin, W (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology (Reading, Engl.) 153:814-25 |
---|---|
Abstract |
Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in the assembly of the divisome, a protein machine required for cell division. Although the biochemical functions of most divisome proteins are unknown, several, including ZipA, FtsA and FtsK, have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane, and that it is active. As shown previously, a single amino acid change in FtsA, R286W, also called FtsA*, bypasses the requirement for either ZipA or FtsK in cell division. In this study, the properties of FtsA* were investigated further, with the eventual goal of understanding the molecular mechanism behind the bypass. Compared to wild-type FtsA, the presence of FtsA* resulted in a modest but significant decrease in the mean length of cells in the population, accelerated the reassembly of Z rings, and suppressed the cell-division block caused by excessively high levels of FtsZ. These effects were not mediated by Z-ring remodelling, because FtsA* did not alter the kinetics of FtsZ turnover within the Z ring, as measured by fluorescence recovery after photobleaching. FtsA* was also unable to permit normal cell division at below normal levels of FtsZ, or after thermoinactivation of ftsZ84(ts). However, turnover of FtsA* in the ring was somewhat faster than that of wild-type FtsA, and overexpressed FtsA* did not inhibit cell division as efficiently as wild-type FtsA. Finally, FtsA* interacted more strongly with FtsZ compared with FtsA in a yeast two-hybrid system. These results suggest that FtsA* interacts with FtsZ in a markedly different way compared with FtsA. |
Links |
PubMed Online version:10.1099/mic.0.2006/001834-0 |
Keywords |
Alleles; Cell Cycle Proteins/genetics; Cell Cycle Proteins/metabolism; Cell Division; Escherichia coli/cytology; Escherichia coli/genetics; Escherichia coli/physiology; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism; Microscopy, Fluorescence; Protein Binding; Two-Hybrid System Techniques |
edit table |
Significance
You can help EcoliWiki by summarizing why this paper is useful
Useful Materials and Methods
You can help Ecoliwiki by describing the useful materials (strains, plasmids, antibodies, etc) described in this paper.
Annotations
<annotationlinks/>
EcoliWiki Links
Add links to pages that link here (e.g. gene, product, method pages)
See also
References
See Help:References for how to manage references in EcoliWiki.