Category:Complex:ClpXP
About
Description (originally from EcoCyc[1]) ClpXP
Comments (originally from EcoCyc[1]) ClpXP is a serine protease complex responsible for the ATP-dependent degradation of a wide range of proteins [2][3][4][5][6][7][8][9][10][3][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34].
References
- ↑ 1.0 1.1 EcoCyc (release 11.1; 2007) Keseler, IM et al. (2005) Nucleic Acids Res. 33(Database issue):D334-7
- ↑ Gottesman, S et al. (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J. Biol. Chem. 268 22618-26 PubMed
- ↑ 3.0 3.1 Wojtkowiak, D et al. (1993) Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268 22609-17 PubMed
- ↑ Welty, DJ et al. (1997) Communication of ClpXP protease hypersensitivity to bacteriophage Mu repressor isoforms. J. Mol. Biol. 272 31-41 PubMed
- ↑ Jones, JM et al. (1998) Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. J. Biol. Chem. 273 459-65 PubMed
- ↑ Mhammedi-Alaoui, A et al. (1994) A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol. Microbiol. 11 1109-16 PubMed
- ↑ Bohn, C et al. (2002) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics 266 827-31 PubMed
- ↑ Gottesman, S et al. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12 1338-47 PubMed
- ↑ Kenniston, JA et al. () Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol. 146 130-40 PubMed
- ↑ Zylicz, M et al. (1998) Formation of the preprimosome protects lambda O from RNA transcription-dependent proteolysis by ClpP/ClpX. Proc. Natl. Acad. Sci. U.S.A. 95 15259-63 PubMed
- ↑ Czyz, A et al. (2001) Rapid degradation of bacteriophage lambda O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells. Arch. Virol. 146 1487-98 PubMed
- ↑ Stephani, K et al. (2003) Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol. Microbiol. 49 1605-14 PubMed
- ↑ Schweder, T et al. (1996) Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J. Bacteriol. 178 470-6 PubMed
- ↑ O'Neill, M et al. (2001) Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity. J. Mol. Biol. 307 951-63 PubMed
- ↑ Frank, EG et al. (1996) Regulation of SOS mutagenesis by proteolysis. Proc. Natl. Acad. Sci. U.S.A. 93 10291-6 PubMed
- ↑ Lehnherr, H & Yarmolinsky, MB (1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92 3274-7 PubMed
- ↑ Flynn, JM et al. (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11 671-83 PubMed
- ↑ Levchenko, I et al. (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science 289 2354-6 PubMed
- ↑ Wah, DA et al. (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12 355-63 PubMed
- ↑ Bolon, DN et al. (2004) Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 16 343-50 PubMed
- ↑ Hersch, GL et al. (2004) SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proc. Natl. Acad. Sci. U.S.A. 101 12136-41 PubMed
- ↑ Flynn, JM et al. (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18 2292-301 PubMed
- ↑ Muffler, A et al. (1996) The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15 1333-9 PubMed
- ↑ Zhou, Y et al. (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15 627-37 PubMed
- ↑ Stüdemann, A et al. (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J. 22 4111-20 PubMed
- ↑ Bolon, DN et al. (2004) Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Mol. Cell 13 443-9 PubMed
- ↑ Neher, SB et al. (2003) Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease. Proc. Natl. Acad. Sci. U.S.A. 100 13219-24 PubMed
- ↑ Grimaud, R et al. (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273 12476-81 PubMed
- ↑ Ortega, J et al. (2000) Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6 1515-21 PubMed
- ↑ Thibault, G et al. (2006) Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. EMBO J. 25 3367-76 PubMed
- ↑ Kim, YI et al. (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5 639-48 PubMed
- ↑ Wegrzyn, A et al. () ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication. Arch. Microbiol. 174 89-96 PubMed
- ↑ Makovets, S et al. (1998) ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems. Mol. Microbiol. 28 25-35 PubMed
- ↑ Szalewska, A et al. (1994) Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli. Mol. Microbiol. 13 469-74 PubMed
This category currently contains no pages or media.