Category:Complex:ClpXP

From EcoliWiki
Jump to: navigation, search

About

Description (originally from EcoCyc[1]) ClpXP

Comments (originally from EcoCyc[1]) ClpXP is a serine protease complex responsible for the ATP-dependent degradation of a wide range of proteins [2][3][4][5][6][7][8][9][10][3][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34].


References

  1. 1.0 1.1 EcoCyc (release 11.1; 2007) Keseler, IM et al. (2005) Nucleic Acids Res. 33(Database issue):D334-7
  2. Gottesman, S et al. (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J. Biol. Chem. 268 22618-26 PubMed
  3. 3.0 3.1 Wojtkowiak, D et al. (1993) Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268 22609-17 PubMed
  4. Welty, DJ et al. (1997) Communication of ClpXP protease hypersensitivity to bacteriophage Mu repressor isoforms. J. Mol. Biol. 272 31-41 PubMed
  5. Jones, JM et al. (1998) Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. J. Biol. Chem. 273 459-65 PubMed
  6. Mhammedi-Alaoui, A et al. (1994) A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol. Microbiol. 11 1109-16 PubMed
  7. Bohn, C et al. (2002) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics 266 827-31 PubMed
  8. Gottesman, S et al. (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12 1338-47 PubMed
  9. Kenniston, JA et al. () Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol. 146 130-40 PubMed
  10. Zylicz, M et al. (1998) Formation of the preprimosome protects lambda O from RNA transcription-dependent proteolysis by ClpP/ClpX. Proc. Natl. Acad. Sci. U.S.A. 95 15259-63 PubMed
  11. Czyz, A et al. (2001) Rapid degradation of bacteriophage lambda O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells. Arch. Virol. 146 1487-98 PubMed
  12. Stephani, K et al. (2003) Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol. Microbiol. 49 1605-14 PubMed
  13. Schweder, T et al. (1996) Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J. Bacteriol. 178 470-6 PubMed
  14. O'Neill, M et al. (2001) Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity. J. Mol. Biol. 307 951-63 PubMed
  15. Frank, EG et al. (1996) Regulation of SOS mutagenesis by proteolysis. Proc. Natl. Acad. Sci. U.S.A. 93 10291-6 PubMed
  16. Lehnherr, H & Yarmolinsky, MB (1995) Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92 3274-7 PubMed
  17. Flynn, JM et al. (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11 671-83 PubMed
  18. Levchenko, I et al. (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science 289 2354-6 PubMed
  19. Wah, DA et al. (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12 355-63 PubMed
  20. Bolon, DN et al. (2004) Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 16 343-50 PubMed
  21. Hersch, GL et al. (2004) SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proc. Natl. Acad. Sci. U.S.A. 101 12136-41 PubMed
  22. Flynn, JM et al. (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18 2292-301 PubMed
  23. Muffler, A et al. (1996) The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15 1333-9 PubMed
  24. Zhou, Y et al. (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15 627-37 PubMed
  25. Stüdemann, A et al. (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J. 22 4111-20 PubMed
  26. Bolon, DN et al. (2004) Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Mol. Cell 13 443-9 PubMed
  27. Neher, SB et al. (2003) Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease. Proc. Natl. Acad. Sci. U.S.A. 100 13219-24 PubMed
  28. Grimaud, R et al. (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273 12476-81 PubMed
  29. Ortega, J et al. (2000) Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6 1515-21 PubMed
  30. Thibault, G et al. (2006) Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. EMBO J. 25 3367-76 PubMed
  31. Kim, YI et al. (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5 639-48 PubMed
  32. Wegrzyn, A et al. () ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication. Arch. Microbiol. 174 89-96 PubMed
  33. Makovets, S et al. (1998) ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems. Mol. Microbiol. 28 25-35 PubMed
  34. Szalewska, A et al. (1994) Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli. Mol. Microbiol. 13 469-74 PubMed

This category currently contains no pages or media.