
COMPUTER ANALYSIS OF DIGE GELS

DECYDER 6.5 CHEAT SHEET

I. Image Loader

A. Open Image Loader

-		e Loader					. 7 .
File	Edit	Help					
	Images to import (.tif; .gel): Gel name Gel ID		 Add Edit Remove		Import images to:	Import 💣	
						Abbot Abbot Abbot Abbot C pp 2(2nd try)	

1

- B. To create a New Project, click the New Project icon in the upper right hand corner
 - 1. Type a name and description for your project
 - 2. Click OK
- C. To add images to an existing project, double click on the project in the list provided
- D. Click the Add button
 - 1. Browse to find your cropped gel images
 - 2. Open the folder for your gel
 - 3. Select all three of the images
 - 4. Click Open
- E. Your images should all appear on one line in the left column. If they appear on multiple lines, you named them incorrectly when scanning and they are no longer linked.
- F. Once you have added all of your gels, click the Import icon at the upper right hand corner. Your images will now be added to your project.
- G. Close Image Loader.

II. Differential In-Gel Analysis (DIA) – Control vs. Experimental

- A. Open DIA
- B. Click the Create Workspace icon or Click File Create Workspace
 - 1. Find your project folder in the list and open it
 - 2. Open the GEL folder
 - 3. Select your gel and all three images should appear in the right column

- 4. Click Create
- C. Adjust the Contrast and Brightness, if necessary, by clicking the Contrast and Brightness icon or click View Contrast/Brightness
- D. Click the Process Gels icon or click Process Process Gel Images
 - 1. Type 2500 as the estimated number of spots
 - 2. Click OK
- E. Click the Properties icon (next to the printer icon) or select View Properties
 - 1. Click the Table View tab
 - 2. Make sure that the Similar, Decreased and Increased boxes are checked under Included Spots
 - 3. Click OK
- F. Click the Image View icon or click View Image View
 - 1. Make sure all of the obvious protein spots are identified (have a colored outline)
 - 2. If there are spots not identified, go back to Process Gel Image and increase the number of spots
- G. Click the All Views icon or click View All Views
 - 1. In the Table panel at the bottom right,
 - click the Max Slope column heading so that the spots are ordered from the largest slope to the smallest
 - a. Select the first spot and look at it in the Image View and 3D View panels
 - i. If it does not look like a real spot or it looks like dust, continue down the list
 - ii. Keep going down the list until you find a real protein spot
 - iii. When you find a real protein spot, write down its Max Slope
 - 2. In the Table at the bottom right, click the Area column heading so that the spots are ordered from the smallest area to the largest
 - a. Select the first spot and look at it in the Image View and 3D View panels
 - i. If it does not look like a real spot or it looks like dust, continue down the list
 - ii. Keep going down the list until you find a real protein spot
 - iii. When you find a real protein spot, write down its Area
 - 3. In the Table at the bottom right, click the Volume column heading so that the spots are ordered from the smallest volume to the largest
 - a. Select the first spot and look at it in the Image View and 3D View panels
 - i. If it does not look like a real spot or it looks like dust, continue down the list
 - ii. Keep going down the list until you find a real protein spot
 - iii. When you find a real protein spot, write down its Volume
 - 4. In the Table at the bottom right, click the Peak Height column heading so that the spots are ordered from the shortest to the tallest

- a. Select the first spot and look at it in the Image View and 3D View panels
 - iv. If it does not look like a real spot or it looks like dust, continue down the list
 - v. Keep going down the list until you find a real protein spot
 - vi. When you find a real protein spot, write down its Peak Height
- H. Click the Exclude Filter icon or click Process Exclude Filter
 - 1. Check the Slope, Area, Volume, and Peak Height Boxes
 - 2. Fill in your recorded values for the Max Slope and minimum Area, Volume, and Peak Height
 - 3. Click OK
 - 4. All of the spots that did not meet your requirements have now been excluded from your analysis
- I. In the Table panel, click the Excluded column heading. Now the excluded spots are together and the decreased and increased spots are grouped
 - 1. Scroll through the excluded spots to make sure none of them are real spots that need to be included
 - a. If a spot needs to be included, uncheck the Exclude box at the bottom of the screen

	<u>j</u>			Pick P01	PTM Exclude	Confirm
a: 138	Upconfirmed	1218	Increased	Evoluted	2.68	
ak Height: 106	Unconfirmed	1219	Increased	Excluded	1.35	
ume: 6463	Unconfirmed	1221	Increased	Excluded	1.26	
	Unconfirmed	1225	Increased	Excluded	1.71	
	Unconfirmed	1226	Increased	Excluded	1.62	
	Unconfirmed	1227	Increased	Excluded	1.49	
N PARTIN	Unconfirmed	1230	Increased	Excluded	2.04	
e la superiore de la companya de la	Unconfirmed	1237	Increased	Excluded	1.26	
	Unconfirmed	1243	Increased	Excluded	1.79	
	Unconfirmed	1250	Increased	Excluded	1.41	
	Unconfirmed	1252	Increased	Excluded	1.99	

- J. Click the Save icon or click File Save Workspace
 - 1. Name the workspace with the gel number
 - 2. Click Save